Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells

Identifieur interne : 00A509 ( Main/Repository ); précédent : 00A508; suivant : 00A510

Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells

Auteurs : RBID : Pascal:04-0182158

Descripteurs français

English descriptors

Abstract

To observe the effects of polarization fields and screening, we have performed contacted electroreflectance (CER) measurements on In0.07Ga0.93N/GaN single quantum well light emitting diodes for different reverse bias voltages. Room-temperature CER spectra exhibited three features which are at lower energy than the GaN band gap and are associated with the quantum well. The position of the lowest-energy experimental peak, attributed to the ground-state quantum well transition, exhibited a limited Stark shift except at large reverse bias when a redshift in the peak energy was observed. Realistic band models of the quantum well samples were constructed using self-consistent Schrodinger-Poisson solutions, taking polarization and screening effects in the quantum well fully into account. The model predicts an initial blueshift in transition energy as reverse bias voltage is increased, due to the cancellation of the polarization electric field by the depletion region field and the associated shift due to the quantum-confined Stark effect. A redshift is predicted to occur as the applied field is further increased past the flatband voltage. While the data and the model are in reasonable agreement for voltages past the flatband voltage, they disagree for smaller values of reverse bias, when charge is stored in the quantum well, and no blueshift is observed experimentally. To eliminate the blueshift and screen the electric field, we speculate that electrons in the quantum well are trapped in localized states. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0182158

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells</title>
<author>
<name sortKey="Kaplar, R J" uniqKey="Kaplar R">R. J. Kaplar</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
<wicri:cityArea>Sandia National Laboratories, Albuquerque</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kurtz, S R" uniqKey="Kurtz S">S. R. Kurtz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
<wicri:cityArea>Sandia National Laboratories, Albuquerque</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Koleske, D D" uniqKey="Koleske D">D. D. Koleske</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
<wicri:cityArea>Sandia National Laboratories, Albuquerque</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fischer, A J" uniqKey="Fischer A">A. J. Fischer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
<wicri:cityArea>Sandia National Laboratories, Albuquerque</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0182158</idno>
<date when="2004-05-01">2004-05-01</date>
<idno type="stanalyst">PASCAL 04-0182158 AIP</idno>
<idno type="RBID">Pascal:04-0182158</idno>
<idno type="wicri:Area/Main/Corpus">00B995</idno>
<idno type="wicri:Area/Main/Repository">00A509</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electroreflectance</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Interface states</term>
<term>Light emitting diodes</term>
<term>Localized states</term>
<term>Quantum confined Stark effect</term>
<term>Red shift</term>
<term>Semiconductor device models</term>
<term>Semiconductor quantum wells</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7820J</term>
<term>7321F</term>
<term>7867D</term>
<term>8560J</term>
<term>7320F</term>
<term>8530D</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Puits quantique semiconducteur</term>
<term>Semiconducteur bande interdite large</term>
<term>Effet Stark confinement quantique</term>
<term>Bande interdite</term>
<term>Etat localisé</term>
<term>Electroréflectance</term>
<term>Déplacement vers le rouge</term>
<term>Diode électroluminescente</term>
<term>Modèle dispositif semiconducteur</term>
<term>Etat interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To observe the effects of polarization fields and screening, we have performed contacted electroreflectance (CER) measurements on In
<sub>0.07</sub>
Ga
<sub>0.93</sub>
N/GaN single quantum well light emitting diodes for different reverse bias voltages. Room-temperature CER spectra exhibited three features which are at lower energy than the GaN band gap and are associated with the quantum well. The position of the lowest-energy experimental peak, attributed to the ground-state quantum well transition, exhibited a limited Stark shift except at large reverse bias when a redshift in the peak energy was observed. Realistic band models of the quantum well samples were constructed using self-consistent Schrodinger-Poisson solutions, taking polarization and screening effects in the quantum well fully into account. The model predicts an initial blueshift in transition energy as reverse bias voltage is increased, due to the cancellation of the polarization electric field by the depletion region field and the associated shift due to the quantum-confined Stark effect. A redshift is predicted to occur as the applied field is further increased past the flatband voltage. While the data and the model are in reasonable agreement for voltages past the flatband voltage, they disagree for smaller values of reverse bias, when charge is stored in the quantum well, and no blueshift is observed experimentally. To eliminate the blueshift and screen the electric field, we speculate that electrons in the quantum well are trapped in localized states. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KAPLAR (R. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KURTZ (S. R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOLESKE (D. D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FISCHER (A. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Sandia National Laboratories, Albuquerque, New Mexico 87185</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>4905-4913</s1>
</fA20>
<fA21>
<s1>2004-05-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0182158</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>To observe the effects of polarization fields and screening, we have performed contacted electroreflectance (CER) measurements on In
<sub>0.07</sub>
Ga
<sub>0.93</sub>
N/GaN single quantum well light emitting diodes for different reverse bias voltages. Room-temperature CER spectra exhibited three features which are at lower energy than the GaN band gap and are associated with the quantum well. The position of the lowest-energy experimental peak, attributed to the ground-state quantum well transition, exhibited a limited Stark shift except at large reverse bias when a redshift in the peak energy was observed. Realistic band models of the quantum well samples were constructed using self-consistent Schrodinger-Poisson solutions, taking polarization and screening effects in the quantum well fully into account. The model predicts an initial blueshift in transition energy as reverse bias voltage is increased, due to the cancellation of the polarization electric field by the depletion region field and the associated shift due to the quantum-confined Stark effect. A redshift is predicted to occur as the applied field is further increased past the flatband voltage. While the data and the model are in reasonable agreement for voltages past the flatband voltage, they disagree for smaller values of reverse bias, when charge is stored in the quantum well, and no blueshift is observed experimentally. To eliminate the blueshift and screen the electric field, we speculate that electrons in the quantum well are trapped in localized states. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70C20F</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>001D03F22</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7820J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8560J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7320F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8530D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet Stark confinement quantique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum confined Stark effect</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Etat localisé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Localized states</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Electroréflectance</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Electroreflectance</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Red shift</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Modèle dispositif semiconducteur</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Semiconductor device models</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Etat interface</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Interface states</s0>
</fC03>
<fN21>
<s1>124</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0416M000132</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0182158
   |texte=   Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024